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Stochastic Filtering and Control of

Linear Systen~~: A General Theory

A. V. BalaJcrishnan

University of California Los Angeles

A large class of filtering and control probleins for linear systems

can be described as follows . We have an observed (stochastic) process

y (t) (say , an m x 1 vector) , t representing continuous tine ,

o < t < T < ~ . This process has the structure:

y(t) = v(t) + n0 (t)

~.fnere n0
(t) is the ~~avoidable rreasurenent error nodelled as a white

Gaussian noise process of known spectral density rr~trix, taken as the

Identity rr~trix for simplicity of nota~ion . The output v(t) is composed

of two parts : the response to the control input u(t) and a random

‘disturbance ’ nL(t) (sorretin~ s referred to as ‘load disturbance ’ or

‘stale noise ’) also c~delled as stat~on~ry Gaussian ; we also assurre the

system responding to the control is linear and time-invariant so that we

have :

v(t) = j B( t—s ) u ( s)d~ + n~ (t )
0

w~er~ u(•) is always ac~u.~ d to b: locally s~ju are integral le , and

t 7 erc~w~t~ ~~~~~~~~~ ~~~ ,~~~~
- 

~~~~~~~~~ ~~~~~~~~
- c~~4~~~2.)

~~~~~ e1~~~~(J ~~~~~~ ~ F.

~~~~~~~~~~~~~
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where B () is a ‘rectangular’ matrix function and J I IB(t)I I 2dt < ~

We assure further nor’e that the random disturbance is ‘physically realizable’

so that we can exploit the representation:

f t
nL(t) = F(t—p) N(p) dp

Jo

where F( P) is a rectangular rratrix such that

~~ ‘‘~~s~ ’’ 2~~ <~

where, in the usual notation ,

fl A i l 2 Tr. AA*.

We assune that the process nL(t) is independent of the observation

noise process n0(t).

It is more convenient now to rewrite the total representation as:

y(t,w) = v(t,w) + Gw(t)
(1.1)

v(t,~) I B(t—s) u(s)ds + I .~ (t—s) w(s)ds

where

GG* = I

= 0

w() is white noise process in the appropriate product Euclidean space,

and

2
I Il~’(~)H ct <

~‘

Jo

—2—
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We hasten to point out that ‘.•;~~ rr~iy replace the white noise for~~lism

by a ‘Wienee process’ for ra]ism for tha above as:

ft
Y(t,w) J v(s,w)ds + G W(t,w)

0

v(t,o) = B(t—s)u(s)ds + J .~i(t— s)dW(s ,w)
Jo J O

It irakes no difference to the theory that follows as to which formalism

is used. The optimization problem we shall consider is a stochastic

control (“regulator”) problem in which th~ filtering problem is implicit :

to m inimize the effect of the disturbance on the output (or soi~e

components of it) . MDre specifically , we wish to minimize:

E j [Qv(t,w), Qv(t,w)]dt
0

(1.2).

+ E J [u(t,w), u(t,w)]dt
0

E denoting expectation, where for each t, u(t,w) rm~st ‘depend ’ only

• upon the available observation up to tine t. We can snow [1] that under

the representation (1.1), (1.2), the optimal control n~ y be sought in the

class of ‘linear’ controls of the form:

u(t,w) = J K(t,s)dY(s,w)ds / .~~~~ ~~~~~~~~~
- I~t(

: 
~~~ 

in the Wiener process formalism, or ~~

f
t 

K(t ,s) y(~~,w)us (1 .

“ . 5
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in the white noise formalism.

This problem embraces already all the stochastic control problexrs

for systems governed by ordinary differential equations by taking the

special case where the Laplace transforms of BC-) and Y ( )

are rational. But it also includes a wide variety of problems involving

partial differential equations where the observation process Y(t)

for each t has its renge in a finite dimensional Eucidean space

(measurements at a finite number of points in the dcniain or cii the boundary

for example) . One may argue that any physical measurement nuist be finite

dimensional; in any case, the extension to the infinite dimensional case

brings little that is new, and we shall not go into it here .

As a simple example of a non-rational case we may mention:

l/t• F(t) = t ~1 e (1.14)

arising fran boundary input in a half-infinite rod [5]. Note that the

associated process nLCt) is not ‘Markovian ’ even in the extended

sense [2]. I

To solve our problem, our basic technique is to oreate an ‘artificial’

state space representation for (1.1) . It is artificial in the sense that

it has nothing to do with tl-e actual state space that originates with the

problems. We shall illustrate this with a specific example below. Without

going into the system theoretic aspects involved , let us simply note that

the controllable part of the original state space can be put in one-to-one

correspondence with the controllable part of the artificial state space .

— 14 —
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Let H d~note L2[0 ,°°;R~ ] where m is the dimension of

the observation process. Let A denote the operator with domain in II:

~~(A) [kH I ~(•) is absolutely continuous with derivative

f1(•) e H also],

and

Af = f1

Let B denote the operator mapping the Euclidean space in which the

controls range, into H by:

B u(t) — B( 1 )u(t ) , 0 <

and similarly

— ~~(~ )w(t ) 0 < t

Assume now that F(t) and B(t) are ‘locally ’ continuous , in

0 < t < ~~~. Then we claim that (1.1) is representable as C° - pC~ h~1LC

• a t ~~ ~~~~ -

= A x(t) + Bu(t) + Yc~j (t ) ; x (O) = 0.
1’ (1.5)

Y(t ) = C x(t) + Gw(t) )

(or appropriate ‘Wiener-process ’ version) , where C is the operator

defined by:

1 : ~~rL or c ~f r U  f (t )  i~ cen t ~r :~i u  in 0 < t < ~

—5 —
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[or , f ( )  is ‘local ly ’ continuous] and

- - -  - .  • 

C~~= ~(O)

(value at the origin of the ‘continuous function ’ representative

of f( )]. S

We can readily show that x(t) is in the domain of C because of the

assumption~of local continuity . On the other hand we do not need to make

the ‘exponential rate of grc~rth’ assumptions as in the earlier version of

the representation [ 3 ]. To see this we have only to note that (1.5) has

the solution . (assuming that u( .)  is locally square integrable) :

ft ~t -

x(t) = I S(t—c)Bu(o)d~ + S(t-a ) .~ w(a)da (1.5)
- 

- S 
-

where S(t) is the semigroup generated by A . Now

t
h(t) = S(t-a ) Bu(a)da is the function: • 

S

0

h(t ,t) = B(~~+ t—a ) u(o)da 0 < <
JO

• • and h(t ,~
) is locally continuous in 0 < ~ < ~, because of the

local continuity of B( ) .  Hence h(t ) is in the domain of C, for each.. -
~~~~

Moreover

C h(t) = I B Ct-a) u(c~)dci

Similarly

-6-
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ft ~t - S

C S(t—a ) ~~w(~ )d~ I ~~(t-a)u(a)da
~0

- • - • -- - - 

which suffices to prove the representation. Of course to complete the

representation we have that the cost functional (1.2) can be written :

tt rt
E J [QCx(t) , QCx(t) ]dt + E J [u(t) , u(t)]dt (1.6)

0 0

In this fcnn we have a stochastic control problem in a Hilbert

Space , and we may apply the techniq ues of [4 ] ;  except for the complication

that C is now unbounded , uncloseable . The ‘operators ’ B and ~~ are

Hu bert-Schmidt and in this sense there is a simplification .

Even thou~ -i C is uncloseable , let us note that

çt
= I B(t—a ) u(cr)da + I ~~(t—a)w(a)da -•

J O

and hence is actually locally continuous in 0 < t , and

rP I

g(p) = [ C S(p—a ) J((a)da C < p < t

defines a linear bounded trans formation on

W~(t) = L2 ((o ,t , R~)

where R~ is the Euclidean space in which w(t) ranges , into

W0
(t) L~ (o ,t;R )

for each 0 < t. We shall only consider u(t) such that

—7—
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u(t)  L (t ,s) y(s)ds 0 < t < T (1.7)
J O

w h e r e - - - -

çt
g(t) = J L (t ,s) f(s)ds 0 < t < T

Jo

defines a Hu bert-Schm idt operator mapping W0 (T) into Wc(T)

where

WC(T) L2[(0,T); R~
]

where is the real Euclidean space in which u(t) ranges for

every t . The Hilbert-Scbmidtness implies that L(t ,s) is Hu bert—

Schmidt also a. e. and that

~~: i~ 
IIUt

~
s)II

~~ 
dt

It is not difficult to see that

- u(t) = I L(t,s)y(s)ds
JO

rt
x(t) = I S(t-~) B u(a)di + S(t—a ) .~~~(a)th

.‘o Jo

y(t) = C x (t) + G w(t )

defirtes x ( )  uniquely, for e~ c~-i ~~
(.) .

—8—
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2. The Filtering Problem.

Let us f irst consider the filtering problem for (1.1) taking

u () to be identically zero. We shall see that this is an essential step

in solving the control problem. Thus let , in the notation of Section 1,

x(t,~~) = J S(t—o ) ~~w(o)do
0 (2.1)

y.~t,w) = Cx(t ,w) + G~(t)

As we have noted earlier , the only difference from the standard problem

treated in E~J is that C is uncicceable. Nevertheless since

ft
~x(t ,w) = J Y(t—a ) ~ (c~)da

J O

and is contirn~ us in t for each ~, we note that, denoting by yt(w)

the element in W0
(t) defined by

y(s,u ) , O < s < t

we see that y
~

(w) is a weak Gaussian randcm variable with finite second

im.inent in W0
(-t ) for each t. Moreover y

~ 
has the covariance

operator:

*I + L(t) L(t)

where L(t) is defined by

(p
L(t)f = g ; g(p ) = j .3~(p—ci ) f( a)dci 0 < p < t,

0

—9—
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and is linear Lc.mded o.-~ W (t ) into W0(t) ; and I is the identity

operator on W 0(t ) .  Let

~c(t ,w) E [x(t ,w) I

Then ~(t ,~ ) belongs to the doirain of C for each t and each

and further

C ~(t ,w) = E [Cx(t ,w) I (2.2)

the novelty in this relation arising from the fact that C is unbounded.

This ce~ be sI-~en readily as follows. We note that (see [4])

*
~(t,w) = E [x(t,w) y

~
(w) I [I + L(t) L(t ) I y~

(u )  (2.3 )

where

f t
E [x(t ,~ ) y~ ( U ) ~ ] ~ = J K(t ,s)f(s)ds

0

• where
S 

p 
~~~~~~~K(t,p) = S(t—p) f S(p—a).~ .~~(p—a ) dci

and the corresponding element in H is given by

ft  ,p 
*I J .~~( t p + ~ ) .~~(p- — a) cli f(s)ds, ~j  ~J o ~ 

.5

—10—
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and is loc~illy conti r ~u~ u~ in U < t , for’ any j ( .)  in W0(t ) .

Hence it follows thet ~m ( t ,~ ) is in the dcATain of C for’ each t

and w and further’ a S i;:: 1e verification establishes (2.2) since the
right side of (2.2) is given by

* 1E [Cx(t ,w) 
~~~~~ 

] [I + L(t) L(t ) ]

arid for any f in W0
(t) :  

*E [C~ (t ,w) y
~

(w) I = C E [x(t ,w) y
~

(w) 
~

Relation (2 .2 )  enables us to extend the arguments in [4] to show that

z(t ,w) y(t , i) — C~(t ,~ ) 0 < t < T

is again white noise. Let P~( t) denote

E [ (xc t ,~~ — ~ (t ,w) ) ( x t ,I~ — ~(t~~) )  *]

Then P~(t) = E Cx(t ,w) x (t ,w) *] — E [~ (-t ,w) ~c(t ,w) *J and it follows

that P~(t) maps into the domain of C. The covariance operator of

y(~~) as an element of W0
(T) has the fo~~

(I + R)

where R is HiTher-t.-Schmrj dt and hence the Krc in factorizatic~-i theorem

(the Kernels being strongly continuous) as in [4] yields

—11—
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(I~R)
1 (i- .~”~ (I- !T)

where Y is volterr~. and

= (I— .~?) y( ,w)

Moreover

(I— I~’)~~ = I + M

where M is Hilbert-Sch.rniclt also. Hence we can write

= Tz(~ ,w)

where

ft
Tf = g; g(t) = J J(t ,a) z(~ ,w)da

0

and following [4] we must have that

*J(t,a) = S(t— a) (C P~ (a))  (2.4 )

so that

~t f t S

P,(t) x = S(a).~~.~~ S( a)~ xth — I S(t-a)(C Pr (a)) e (C P~ (a))S*(t .~a)cki
r 

~o .‘ o

and in t uc~i ~;e h~v~ ‘th~ t, fo~ x and y in the dom~,in of A~

—12— 
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[!~~(t)x ,y] = [P
f(t)x ,

ACy] + [Pf
( t)y, A~x]

- - - -  - - ‘ --  - ‘ + t .~~x, ~~yJ - [C P~ (t)  x, C Pf(t)y]; (2.5)

Pf
(0) = 0.

fl~rther we have:

~(t ,w) = I S(t—c~
) (C P~ (o ) )  (y(a ,w) — Cx(ci ,w))  th

J o

£

= — J S(t-a) (C P
f
(1)) C ~ (cr ,w) da

0

.1.

+ J S(t—a) (C P
f
(a))”y (e,w) th (2.6)

0

This is an ‘integral equation’ that ~(t ,u )  satisfies . Moreover (2.6)

has a unique solution. For suppose there were two solutions

~2(t ,w) .  The difference , say h(t) , ( fixing the w ) , would satisf y

ft
h(t) = — I S(t-~y) (C P f (a ) ) ’

~C h(a) de~J O

and hence we can deduce that:

- ‘ C h (t) — I C S(t-cr ) (C Pf (cr ) )  ‘(C h (y ) )  da

But C h ( • )  is an ela-nent of L2 (O ,T) and the right—side defines a

HiThert-Sc-ir~ddt Vclterra transformation which is then quasini lpotent. Hence

C h (s) r i - :  he zero. ~~~- ‘c’

— 13—
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C ~1
(t ,w) = C ~2 (t ,w)

Hence z (t ,~ ) remains the same:

z(t,~) = y(t ,Li) — C ~1(t ,~i) y(t,w) — C

But

ft

J J(t ,a) z(a ,w)c~z
0

proving the uniqueness of solution of (2 .6 ) .  We could also have deduced

- ‘ this from the uniqueness of the Krein factorization . We can also rewrite

(2.6) in the differential form in the usual sense (see [4)) :

~ (t ,w) A~(t ,w) + (C Pf (t ) ) *(y(t ,w) - C x(t,w)) 
-

x(O ,u )  0

yielding thus a generalization of the Kalman filter equations . Let us note

in passing here that

A -  (CPf
(t))*C -

is closed on the domain of A and the resolvent set includes the open right

half plane. It does ~~ t however generate a ccntract ion semigroup for t > 0.

The prcof of uniqueness of soluticn to (2. 5) can be given by invoking the

dual control problem analogous to the case where C is bounded , as in [4] but

will he c~:i~ t-2 :~ h’~r~” h -: ‘ ‘
~~~~~~ ci I~ . :_ i t _ ~:i,cn ci : ‘ .~:e. Fr~..—m th is i L ~ tli. ‘- -

~

— 14-
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follow that [P
f

(t )x ,x] is monotone in t.

Let Cn be defined on H by:

1/n
C
~
1e = g; g(t) n J

Then C is bounded. Hence it follows that

E (Cn x(t,~ )) (C x (t ,w) *)

= 

1~ 
(C~ S(a).~ ) (C~ S(a).~~)*da,

arid as n goes to infinite, the left side converges strongly and the right
side yields

C (C R(t,f))~ ; R(t,t) = E [x(t ,w) x(t,~)*J.

In a similar manner we can show that

• E [( C  ~(t ,c~)) (c ~~t ,w )  *] = C (o ~(t ,t))* ;

E [~ (t ,~ ) ~ (t ,u ) :~) = 
~~ (t,t)

E [(C (x (t ,u )  — ~ (t ,w ) )  (c x(t ,w) — C ~(t ,o~))  *]
C (C P~(t))

We are of course most interested in the case T ~ ~~~. We have

seen that [ P f ( t)  x,x] is monotone. Also

tP
f
(t)x ,x] < [R (t ,t)x ,x] = j [S(c).~i i~ S(a)C x ,xJdcj

J o

—15—
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Let us assume now that

J IIF*S (a)~x II
2da = 1R~x,xJ < (2.7 ’

0

(This is clearly satisfied in our examnj le ( 1.4)) .

Then Pf(t) also converges strongly, to P~ , say; further P~,
m aps into the domain of C and satisfies

R~ - J S(a) (C P~ )~ (C P~ ) S( a) *d~

and hence also the algebraic equation:

0 = [P,)x,A*y] + (P~y,ACxJ + fY~;x,.~t7~y] - [ C ~~~~ P~,y] (2. 6 ;

which has a unique solution. 
•
.

3. The Control Problem.

Because of space limitations , we shall have to limit the

presentation to the main results, ernphasing only the differences arising

due to the unboundedness of C. Thus, defining as in [4 , Chapter 6] , and

confining ourselves to controls defined by (1.7);

x(t,~) — x
~
(t ,~

)

C ~(t ,w) + G~(t) = ~ (t ,w)

where

~~
(t ,w) = A x(t,w) + B u (t ,~ )

—16—
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we can invoke the results of section 2 to obtain that

p.

- - - ‘  - ~~~~~~ -= -~~(t ,~ ) — C ~ (t ,w)

where

= E [~(t ,w) I ~ (p ,w ) , o < p < t]

yields white noise. We can then also proceed as in [4] to show that we can

also express any u(t ,c~) satisfying (1.7), also as

ft -

u (t,W ) = J m (t,P) z(P,W)dP0

where the operator is Hu bert-Schmidt . The separation th~~rem follows

easily from this , and we can show that the optimal control is given by

fT
u0

(t ,~ ) = — J (Q C S (P—t)B)~ ~(P ,~ )dP (3 .1)
t

where

~c (P ,(~) = ~ (p ,w) + x
~

(P ,c~)

and hence as in section 2, is the unique solution of

~~ (p ,w) = A x(P ,~ ) + B u0(P ,
(
~))

+ (c P~(p))~(y(p,~) - C ~(p ,w))
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Further we can follow [4] , making appropriate rrr.dilications of the

urthoundedness of C, to deduce from (3.1) that

u0(t ,w) = — (P
0

(t )B)~’ ~(t ,u)

where P (t) is the solution ofc

[P (t )x ,Ay] + [P
c
(t)AX

~
y]

+ [QCx , QCy]

— [(P0(t)B)*x , 
(Pc

(t)B)ey];

P ( T ) = O  (3 .~~C

for x ,y in the danain of A.
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